Defense Media Network

NASA: Assured Autonomy for Aviation Transformation

NASA's Aerospace Research Mission Directorate on NACA's 100th Anniversary

 

The current effort to integrate unmanned aircraft into the National Airspace System is aimed squarely at automated drones. The Wild, Wild West of unmanned flight – the exuberant realm where innovators see the greatest array of possibilities for unmanned aviation – is in the low-altitude airspace known to the FAA as Class G or “uncontrolled,” a layer from the ground up to between either 700 or 1,200 feet, depending on the floor of the overlying Class E space. In Class G airspace, the air traffic control system has no authority or responsibility to prescribe routes and altitudes, though visual flight rules (VFR) apply: Pilots must be able to see and avoid other aircraft, and assume responsibility for maintaining separation.

Six U.S. aerial photo and production companies have FAA exemptions to use UAS in filming. Impreza54 via Wikimedia Commons

Six U.S. aerial photo and production companies have FAA exemptions to use UAS in filming. Impreza54 via Wikimedia Commons

It is in this uncontrolled space where private operators and service providers are in the process of what Allen calls “the democratization of the skies,” awakening to a variety of applications, from commercial to personal use. For now, the most visible unmanned systems for personal use are those lining the shelves of local hobby and toy stores; while it’s not illegal to own these, it’s illegal to operate them in the national airspace. And the proliferation of these toys is only a sign of things to come: Both Google and Amazon are investigating the possibility of developing a fleet of self-flying UAS for the purposes of package delivery, and major automobile manufacturers as well as small startup companies are developing personal air vehicles or “flying cars.”

“So we’re moving towards a future with less skilled operators in the air,” said Allen. “We’ll be moving away from trained and licensed pilots to, say, operators or drivers – or ‘flyvers,’ as I like to call them. It’s a big sky. But think about what happens when our highways are elevated into skyways, and you’ve got a lot of people trying to access the same space.” Some degree of automation, and eventually autonomy, will be required to accommodate this increased demand for access and for these less skilled operators to venture into the low-altitude frontier.

For many of those hoping to operate aircraft in the low-altitude airspace, autonomy offers practical solutions to specific problems. If a company such as Amazon – which delivers millions of packages every day – were able to develop a fleet of unmanned craft that could execute same-day deliveries, it would bankrupt itself hiring remote pilots for each of them. If an unmanned craft on a search-and-rescue mission has to fly under a tree canopy, or through a tunnel, and cuts itself off from the GPS system, it will have to be able to continue its mission while keeping itself and all other people and property in the vicinity safe.

In 2014, at NASA’s Langley Research Center, Allen assembled a multidisciplinary team to address the many issues and problems associated with autonomous flight. This team of civil servants, contractors, and student interns, out of a facility known as the Autonomy Incubator, includes not only seasoned researchers, but also mechanical and electrical engineers, roboticists, computer scientists, and even psychologists to study human-machine interactions. “The idea is to pull together and co-locate a multidisciplinary team with the right set of skills to start solving those problems,” said Allen, “to enable missions we haven’t been able to execute before because we didn’t have the autonomy capabilities we needed.”

In simplest terms, the purpose of the Autonomy Incubator is to bring human-like capabilities to aircraft and other machines in the form of safe and reliable integrated system solutions to the challenges identified by NASA research programs across mission directorates. Many of these capabilities are available in some form – cameras, for example, are often perfectly serviceable as “eyes” – and the Incubator team hopes to integrate them into increasingly autonomous systems that respond as humans would to the unexpected.

“So you bring cameras onboard a vehicle,” said Allen. “You bring laser systems for distance measurements onboard. You bring processing onboard and use whatever processing power you have, whatever information is at your disposal. You design appropriate algorithms to plan your path, to detect and avoid objects – and even to classify objects. It’s important to know whether you can [go] through an object or must go around it. These are the pieces we’re working on. We need systems that can assess the environment and make decisions under uncertainty and when faced with situations they haven’t been programmed to respond to.”

 

Safe, Autonomous Systems Operations

NASA investigators throughout the ARMD are looking at the issue of autonomy not only in terms of individual vehicles, but also in terms of the air traffic management system as a whole. This requires system-wide awareness: At the vehicle level, an autonomous craft must not only be aware of its external environment – it must also be aware of itself, said Bob Pearce, NASA’s Director for Strategy, Architecture and Analysis. “One example of that,” he said, “is that a lot of vehicles today have health management systems, the ability to actually understand the subsystems on an airplane and whether any of those systems are either degraded or in some sense have failed . . . if you know there is an issue, you could actually change the controls in order to maintain safety – and do that with a pilot’s level of proficiency.”

Likewise, if autonomous vehicles are to operate in civilian low-altitude airspace, some kind of system-wide certification and monitoring capability will need to be implemented: Just as the self-driving automobiles being developed by private-sector innovators will still need laws, roads, and traffic signals, low-altitude autonomous aircraft will require a system to authorize access and assure safety in this new frontier.

Prev Page 1 2 3 4 Next Page

By

Craig Collins is a veteran freelance writer and a regular Faircount Media Group contributor who...