Defense Media Network

DARPA’s 60-Year Space Adventure

A week or so later, Karp admitted that he couldn’t deliver on that demand, but he had a counter-offer. “We had a secretary named Gilda, who smoked Virginia Slims, whose pack was one and a half times taller than the Marlboro pack and a bit more compact,” and Karp promised that he could make a receiver of that size, Tether recalled. Karp followed through. By leveraging the lower-noise circuitry gallium arsenide made possible, GPS receivers made with the materials could detect satellites at a greater distance. The firm Rockwell Collins manufactured the first chip sets for the miniaturized “Virginia Slim” GPS receivers. “When you pick up your phone that has a GPS capability, it all goes back to this one guy, Sherman Karp, who said, ‘I can make this thing as small as you want it to be,’” said Tether.

For Tether, another favorite eureka moment came with the development of Orbital Express, a joint effort with NASA’s Marshall Space Flight Center to demonstrate autonomous robotic servicing and refueling of satellites. “The problem we have with spacecraft is once they are up there, it’s hard to do anything with them,” he said. “If something breaks down, you’re stuck; you lose the whole thing.” DARPA’s answer was to “create a spacecraft that could literally go up and repair a satellite on orbit, either change out the batteries or put something new into it,” Tether said. “And out of that demonstration, called Orbital Express (2007), started a whole industry.”

“When you pick up your phone that has a GPS capability, it all goes back to this one guy, Sherman Karp, who said, ‘I can make this thing as small as you want it to be.’”

Orbital Express consisted of two spacecraft: Autonomous Space Transfer and Robotic Orbiter (ASTRO), and NextSat, the client or “servicee.” After launch on March 8, 2007, the mission spent 135 days on orbit, conducting seven separate rendezvous and docking procedures from distances up to 400 kilometers. While docked, ASTRO and NextSat carried out 14 refuelings, six battery transfers, and a flight computer changeout, proving the feasibility and utility of unmanned repair, refueling, and maintenance of satellites in Earth orbit.

Orbital Express NextSat DARPA web

The Orbital Express Program’s NextSat “servicee” satellite, seen from ASTRO, a robotic repair and maintenance spacecraft. DARPA image

“No other DARPA program in the recent past may have more profound impact on the future of space access and infrastructure than Orbital Express,” Brown, Kennedy, and Pulliam emphasized in DARPA’s Space History. “With Orbital Express, DARPA offered a new way of thinking about the design and operation of future space systems: not only can serviceable satellites offer unmatched capabilities, they also provide decision-makers and warfighters with the ability to change or modify these capabilities at any time in their life cycle, as well as the ability to continue to perform the intended mission despite changes to the operating environment.” Today, several companies are building unmanned spacecraft that will service and repair satellites on orbit.

 

DARPA and the Commercial Space Revolution

DARPA’s insistence on thinking of better ways to conduct space missions has helped inform its approach to its current activities. Born out of a frustration with large defense satellite projects for missile warning and weather forecasting going way over budget and well beyond schedule, DARPA officials like Fred Kennedy, the Director of the Tactical Technology Office, are leading the charge for dramatic changes in the way we approach the space component of the national security mission. “The surface symptoms of the problem are the extreme costs and long schedules we’ve been enduring to put some of our systems up,” said Kennedy. “This is driving risk-aversion into the culture to a level that is unsupportable, which is feeding our cost and schedule problems, and what’s worse is killing us in terms of our ability to innovate and respond to emerging threats. It’s opening up both our acquisition and tactical decision loops such that our adversaries now can build countermeasures more quickly than we actually field systems.”

The solution, says Kennedy, is to “upend the current space enterprise, the order of battle, the architecture such that we will incentivize risk-taking, innovation, and closing the decision loop rather than the reverse.” Specifically, he sees DARPA’s future space activities being built on a foundation of “commoditized” and “productized” spacecraft and rapid response launch capabilities. In that sense, DARPA is continuing a technology trajectory with roots, including ones that took hold in the early 2000s in the Rapid Access to Space program. That effort included the first government contract for the commercial space pioneer, Space Technology Corporation (SpaceX), to launch its Falcon 1, which the agency was eyeing as a potential pathway for getting small payloads into space both quickly and cheaply. The two launches executed under DARPA contract provided hard lessons – one launch failed at 25 seconds and the second would have reached orbit had the rocket’s second stage not cut off prematurely – and valuable operational analyses that SpaceX subsequently leveraged for a Falcon 1 success on its fourth try and for its subsequent development of its workhorse Falcon 9.

More than ever now, DARPA is embracing the goal of access to space with unprecedented ease, versatility, scale, and affordability. “I want to build simple, very cheap things that I can mass produce,” said Kennedy. “And I think we can do that because now we have the commercial vendors – SpaceX, OneWeb, Telesat, Boeing, Samsung – who are off and running trying to figure out how to do mass production of small satellites. I think the commercial sector is actually going to get out in front of us on this one, and show us how to do the Model T of spacecraft. What we need to do is figure out how to build a good enough payload that we can mount on a good enough [satellite] bus and go do the missions that we do today.”

Born out of a frustration with large defense satellite projects for missile warning and weather forecasting going way over budget and well beyond schedule, DARPA officials like Fred Kennedy, the Director of the Tactical Technology Office, are leading the charge for dramatic changes in the way we approach the space component of the national security mission.

In a bid to perpetuate DARPA’s culture of driving technological disruption, the agency is pushing several ongoing DARPA space initiatives:

Blackjack. This program is designed to develop space technologies that demonstrate an extensive smallsat constellation in low Earth orbit (LEO). Blackjack, said Krassner of DARPA’s Tactical Technology Office, “is designed to take advantage of the emerging commercial LEO constellations. The question is: Can the military adopt these commodity buses to put military payloads on them and operate them as a distributed network? The advantage would include cost savings from using these commoditized buses. They would also provide resilience, since everything we now put on a big platform we could have instead in a distributed architecture. There would be many more targets an adversary would have to eliminate. Systems coming out of a successful Blackjack would provide the opportunity to refresh and update technology on a much more frequent basis. We think this is a potential disruptive architecture concept for national security space.” Added Kennedy, “Blackjack gets us to a different world where we are no longer risk-averse. If we can get the payload community to come along so that they understand they will have to produce mass-reproducible systems, I think we will have entered a new era. Rather than biting our nails every time we are sitting there for launch, we should be saying, ‘I can handle losing six of 12 or 15 of these. I’ll just build and launch a few more.’”

Prev Page 1 2 3 4 Next Page

By

Edward Goldstein has more than 20 years' experience in the U.S. space community. From...