Defense Media Network

DARPA Ushers Game-changing Technology into the Real World

In less formal transition types, some DARPA technologies are handed off to other federal or state government agencies, which have recognized enough promise in the technologies to take them over for next-stage development and even implementation. In the lead-up to the 2014 Super Bowl at the New Jersey Meadowlands, for example, the Federal Bureau of Investigation invited DARPA to sit in on the meetings of a joint task force composed of federal, state, and local law enforcement officials to strategize about how to combat the surge in sex trafficking that’s often tied to major sporting events. These agencies approached DARPA because of its expertise in deep data analysis, as demonstrated by its XDATA program, which produced tools for processing and analyzing large, imperfect, and incomplete datasets that helped several federal agencies identify previously invisible routes of terrorist financing. But according to Wade Shen, a program manager in DARPA’s Information Innovation Office, it didn’t take long to discover that the challenge of finding and prosecuting human traffickers went beyond data analysis.

MEMEX trafficking heat map DARPA web

This heat map of human trafficking activity across the world is one of the tools that is part of DARPA’s Memex program, designed to help law enforcement officers and others do investigations online and hunt down human traffickers. DARPA graphic

He and others scanned the Deep Web – an enormous part of the World Wide Web that isn’t discoverable by standard search engines and which is populated with sites that use password protection or encryption – for prostitution ads. “There were thousands and thousands of ads every day posted on these [Deep Web] forums,” said Shen. Even with the XDATA tools in hand, “it was hard to figure out whether you were looking for an ad for a private contractor versus somebody who is trafficking in large numbers of people,” Shen said. “We realized we had more than just a data analytics problem.” It was a problem in searching, acquiring, and filtering data – a problem, in this Deep Web case, that commercial search engines weren’t equipped to solve.

Shen managed the follow-on DARPA program, Memex, through most of its life cycle. Within six months, the team had fielded an initial capability for users in the New York/New Jersey metropolitan region. By the time the program had concluded in 2018, more than 40 law enforcement agencies, several of them in overseas countries, were using Memex software – an open-source, downloadable set of tools for searching and analyzing data from the Deep Web.

One of the presenters at the 2015 Wait, What? forum in St. Louis was John Temple, chief of the Human Trafficking Response Unit for the New York County District Attorney’s Office. The Memex software, Temple said, allowed his investigators to thwart the tactics often used by traffickers – having young women hold up signs with contact information in a photograph, for example, rather than including the information in searchable text – and build a case that led to the conviction of a man who had been prostituting young girls for more than five years.

By the time the program had concluded in 2018, more than 40 law enforcement agencies, several of them in overseas countries, were using Memex software – an open-source, downloadable set of tools for searching and analyzing data from the Deep Web.

Memex is just one example of a technology transition that extends beyond the U.S. military. Some years ago, when the U.S. Air Force Space Command articulated a need to rapidly detect small objects in space – both the proliferating microsatellites, or CubeSats, being launched by the United States and other entities, and the increasing accumulation of space debris orbiting the earth – DARPA launched a program, the Space Surveillance Telescope (SST), which would be designed to overcome the small field of view and other limitations of conventional telescopes. Operational since 2011, the SST now offers viewers a “windshield” view, capable of detecting 10,000 softball-sized objects, in a field of view the size of the continental United States, within seconds.

Dr. Lindsay Millard, an expert in space-based sensing who joined DARPA in 2014 as a program manager in the Tactical Technology Office, describes the SST as a suite of technologies – mirrors, lenses, small-object detection algorithms, and faster search operations, among others – that ushered in new capability. “What the technology allowed you to do,” she said, “was maintain a very, very wide field of view, but at the same time a very high resolution. The curved focal plane that DARPA and the MIT Lincoln Laboratory developed enabled that.”

By the time DARPA formally transferred the SST to the Air Force in 2016, the National Aeronautics and Space Administration (NASA) already had begun capitalizing on the SST’s capability to help provide warning of asteroids and other near-Earth objects. NASA has used the SST to observe millions of asteroids, discovering 3,600 new ones in the process, along with 68 near-Earth objects – making the telescope the most prolific tool for asteroid observation in the world. While it was designed specifically to track threats to the Air Force’s space-based assets, said Millard, “I think once a technology becomes available and people see what it can do, you end up finding a lot of other uses that you didn’t anticipate.”

The main lever that tipped the SST from a DARPA-led design and construction program to ownership and operation by the Air Force, Millard said, was a 2013 Memorandum of Understanding between the U.S. Secretary of Defense and the Australian Minister of Defense to locate the telescope in Australia, part of a joint initiative to increase space situational awareness over the Southern Hemisphere. The SST is currently being upgraded and prepared for installation at the Harold E. Holt Naval Communication Station near Exmouth, Western Australia.

Space Surveillance Telescope DARPA web

DARPA’s Space Surveillance Telescope (SST) program was designed to rapidly detect small objects in space. Transferred to the Air Force in 2016, SST has also been used by NASA to discover more than 3,600 new asteroids, including 68 near-Earth objects. SST will be upgraded and installed at a new facility in Australia in the near future. DARPA image

As the SST and other programs illustrate, there is no fixed formula for transitioning a DARPA technology into the field. The mode of transition is often effectively discovered as program managers, DARPA transition professionals, liaisons, service branch officials, and the investigators whose work is solicited or supported by DARPA, collectively move a technology forward. In many transitions, such as the recent transfer of the LUKE arm to the commercial sector, DARPA will develop technologies to a point where the risk becomes low enough for civilian entities to take over development. In these cases, private capital and commerce can drive further advances and efficiencies that may, down the road, facilitate incorporation into military systems. Often, the interplay between the military and civilian researchers is almost symbiotic, with each influencing the other as a technology matures. Much of the technology that the world takes for granted today – the internet, the graphical user interface, the computer mouse, and handheld GPS receivers, for example – can be traced, at least in part, to DARPA-funded projects of decades past.

As Masiello pointed out, tactical grassroots programs such as Remote Advise and Assist (RAA) – which led to a situational awareness and decision-assistance tool for ground troops – in contrast to strategic big-picture programs such as ACTUV and LRASM, illustrate DARPA’s ability to receive and act on requests for capabilities that originate anywhere within the military: from both the bottom and the top. [For more on RAA, see “DARPA at the Tactical Edge”] “Along with the service LNOs, we have insight across the entire portfolio, and are able to match technology to requirements,” he said. “On the one hand, with LRASM, we had a four-star admiral issuing an Urgent Operational Need statement that echoed throughout the department, and DARPA responded to that. On the other hand, we had lower-level discussions with warfighters in the field, to determine what they needed from the RAA, and we responded quickly to address those requirements.”

As the SST and other programs illustrate, there is no fixed formula for transitioning a DARPA technology into the field. The mode of transition is often effectively discovered as program managers, DARPA transition professionals, liaisons, service branch officials, and the investigators whose work is solicited or supported by DARPA, collectively move a technology forward.

It’s easy to measure whether a DARPA transition can be called a success, said Murphy: “When the last DARPA dollar is spent and somebody else is investing significantly – in further research, utilization, buying down the technological risk, or making it more user-friendly – then we consider that a transition success. Sometimes it ends with people sort of liking it and thinking it could be useful someday, or thinking we’re pushing the technology envelope too far.” Programs that end in this way, understandably, don’t make much noise, but they’re evidence that DARPA is staying true to its mission of pursuing the limits of what technology can do.

Whether they begin at the bottom or the top, and whether they transition or not, all DARPA programs have one thing in common: Even before they’re launched, their program managers develop strategies for transitioning anticipated results into the real world. From their first day on the job, DARPA program managers envision that the new extraordinary technology ideas they expect to make real ultimately will make a difference.

Prev Page 1 2 3 4 Next Page

By

Craig Collins is a veteran freelance writer and a regular Faircount Media Group contributor who...